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A New Approach to the Synthesis of the 173-Butenolide Fragment of Cardenolides
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Abstract: A new, efficient synthesis of the 17B-butenolide fragment characteristic of cardenolides is effected by
[2 + 2]-cycloaddition of dichloroketene to 3B-acetoxypregna-5,20-diene. as a key step.
© 1999 Elsevier Science Ltd. All rights reserved.
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Cardenolides are plant steroids, which occur as glycosides and possess powerful cardiotonic activity. They
are considered as “the most ingested drugs in medicine”." Since the pioneering studies by Ruzicka® and the first
synthesis of digitoxigenin® in 1962 enormous efforts have been directed toward synthetic cardenolides.* Despite
the long history of research in the area, the interest in cardenolides continues. Recently reported work on
cardenolides concerns the total synthesis,"* the biosynthesis,’ and the search for new, less toxic digitalis-like
compounds for therapeutic use with better pharmacological properties.® The new methods of introduction of
the 17B-butenolide moiety* and synthetic approaches to complex cardenolides have also been reported.” Besides
the 14B-hydroxyl group, the 17B-butenolide moiety is one of the crucial features of cardenolides indispensable
for their biological activity. 17-Oxoandrostanes and 21-hydroxy-20-oxopregnanes have been widely used as
substrates in the syntheses of cardenolides. **

This work is a continuation of our interest in steroidal cyclobutanones.” Since the transformation of
pregnane derivatives into 17(3-butenolide steroids requires a two carbon side chain elongation, the reaction of
the appropriate olefinic substrate with a reactive ketene appeared to be an attractive approach to the four
carbon side-chain moiety characteristic of cardenolides.

The Scheme 1 illustrates the synthetic pathway. The starting olefin 1, the 3B-acetoxypregna-5,20-diene,
was obtained from 3pB-acetoxypregn-5-en-20-one following the reported procedure.'” The regioselective
[2 + 2] cycloaddition of 1 and dichloroketene'™* afforded dichlorocyclobutanone 2 in 58% isolated yield.”" This
could be effectively reduced with zinc in AcOH to 3 or 4, depending on the reaction conditions.”” However,
when the crude cycloaddition product was immediately reduced 4 was isolated in 82% yield.''* At this stage of
the synthesis, the 3B-hydroxyl group had to be protected as a TBDMS-ether in two steps: hydrolysis of 4
(K,COs, MeOH; 98% yield of 5) followed by the reaction with t-butyldimethylsilyl chloride (imidazole, DMF,
1h, r.t.) gave 6 in 92% yield. The Baeyer-Villiger oxidation of 6 (30% H,0,, MeOH-THF, NaOH) resulted in
formation of the lactone 7 (87% yield after short column chromatography) as a 1:1 mixture of C-20 epimers.'"
The dehydrogenation of the lactone 7 was achieved by taking advantage of the phenylselenylation-oxidation
procedure.”” Compound 8 was isolated in 75% yield from the reaction of 7 with LDA and PhSeCl (THF, -70
°C), while oxidation of 8 (30% H,0,, THF-AcOH) gave butenolide 9 in 67% yield. The deprotection of the
TBDMS-ether afforded the known 3B-hydroxy derivative 10.™

0040-4039/99/$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved.
PII: S0040-4039(99)01130-2



5914

This method of constructing the butenolide fragment of cardenolides is relatively simple and efficient (the

total yield of the five step synthesis of 9 from the readily available 1 is 32 %). The transformation of 14a-card-
20(22)-enolide to the A'* olefin and 14B-hydroxy derivatives has been reported.”
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2: IR (CHCLy): v = 1805, 1725 cm™; 'H NMR (300 MHz, CDCl3): & = 5.38 (br d, J = 4.9 Hz, 1H, 6-H), 4.60 (m, 1H, 3a-H),
3.22 - 3.03 (m, 2H, CH,CO), 2.03 (s, 3H, CH;CO,), 1.03 and 1.02 (s, 3H, 19H,), 0.78 and 0.72 (s, 3H. 18-H). 4: m.p. 130-
132°C (MeOH),); IR: v=1775, 1725 cm' "H NMR (CDCl,): 8 =5.38 (br d, J = 5.1 Hz, 1H, 6-H), 4.60 (m, 1H, 3a-H), 3.14
- 3.00 (m, 2H, CH,CO), 2.87 - 2.70 (m, 2H, CH,CO), 2.03 ( s, 3H, CH;CO,), 1.03 (s, 3H, 19-H), 0.70 (s, 3H, 18-H). 7: m.p.
201-205 °C; IR (CHCL): v = 1775 cm™; "H NMR (CDCl5): & = 5.33 (bd, J=5.2 Hz, 1H, 6-H). 4.47 (dd. J, = 8.24 Hz, J, = 8.52
Hz. IH. CH0., isomer A) and 4.37 (dd, J, = 8.24 Hz, J, = 7.97 Hz, 1H. CH,0, isomer A), 3.93 (dd, J; = 9.07 Hz. J; = 9.34 Hz,
1H. CH,0. isomer B) and 3.83 (dd, J; = 9.07 Hz, J, = 9.61 Hz. 1H, CH,0, isomer B), 3.48 (m, 1H, 3a-H). 2.65-2. 48 (m, 2H,
CH,CO), 1.00 (s, 3H, 19-H), 0.89 [9H, s, C(CH;)3], 0.70 and 0.69 (s, 3H, 18-H), 0.06 [s, 6H, Si(CHs),]. 9: mp: 183-185 °C
(heptane), [a]p = - 40° (¢ = 0.25, CHCl,); IR (CHCl,): v = 1785, 1750, 1630 cm™; "H NMR (CDCl,): 8 = 5.85(d, J= 1.6 Hz,
1H. 22-H), 5.32 (bd, J = 5.2 Hz, 1H, 6-H), 4.83 and 4.69 (ABX, J = 17.6 Hz and 1.6 Hz, 2H, CH;0), 3.48 (m, 1H, 30.-H), 1.00
(s. 3H, 19-H), 0.89 [s, 9H, C(CHs);]., 0.64 (s, 3H, 18-H), 0.06 [s, 6H, Si(CH3)a].



